Prime : Complete AI/ML Job Preparation!
By Apna Collage
Uncategorized
Course Content
01. Orientataion Session
-
Prime Orientation Session
00:00
02. Course Intoduction
-
01. Course Objective
00:00 -
02. What will we Learn
00:00 -
03. Schedule
00:00 -
04. Why did we choose Python
00:00 -
05. Tools to Install
00:00 -
06. Installation Guide Prime
00:00 -
07. Using Visual Studio Code
00:00
03. Python Fundamentals (Part I)
-
01. Our First Program
00:00 -
02. Variables in Python
00:00 -
03. Data Types in Python
00:00 -
04. Keywords & Comments
00:00 -
05. Style Guide
00:00 -
06. Arithmetic Operators
00:00 -
07. Relational Operators
00:00 -
08. Assignment Operators
00:00 -
09. Logical Operators
00:00 -
10. Operator Precedence
00:00 -
11. Type Conversion & Casting
00:00 -
12. Taking User Input
00:00 -
13. Average of 2 Nums
00:00 -
14. Python Fundamentals _Part1
00:00 -
15. Python Fundamentals _Assignment1
00:00
04. Python Fundamentals (Part II)
-
01. Conditional Statements in Python
00:00 -
02. Practice Examples (Conditionals)
00:00 -
03. Odd or Even
00:00 -
04. Nesting
00:00 -
05. Match case in Python
00:00 -
06. Loops using while
00:00 -
07. Practice Examples (Loops)
00:00 -
08. Multiplication Table of N
00:00 -
09. Break & Continue
00:00 -
10. Loops using for
00:00 -
11. Vowel Count
00:00 -
12. range( ) Function
00:00 -
13. Sum of N numbers
00:00 -
14. Functions in Python
00:00 -
15. Practice Examples (Functions)
00:00 -
16. Types of Functions
00:00 -
17. Lambda Functions
00:00 -
18. Factorial of N
00:00 -
19. Python Fundamentals _Part2
00:00 -
20. Python Fundamentals _Assignment2
00:00
05. Python Fundamentals (Part III)
-
01. Conditional Statements in Python
00:00 -
02. Practice Examples (Conditionals)
00:00 -
03. Odd or Even
00:00 -
04. Nesting
00:00 -
05. Match case in Python
00:00 -
06. Loops using while
00:00 -
07. Practice Examples (Loops)
00:00 -
08. Multiplication Table of N
00:00 -
09. Break & Continue
00:00 -
10. Loops using for
00:00 -
11. Vowel Count
00:00 -
12. range( ) Function
00:00 -
13. Sum of N numbers
00:00 -
14. Functions in Python
00:00 -
15. Practice Examples (Functions)
00:00 -
16. Types of Functions
00:00 -
17. Lambda Functions
00:00 -
18. Factorial of N
00:00 -
19. Python Fundamentals _Part2
00:00 -
20. Python Fundamentals _Assignment2
00:00
06. Python Fundamentals (Part IV)
-
01. What is Object Oriented Programming
00:00 -
02. Classes & Objects
00:00 -
03. Attributes & Methods
00:00 -
04. Constructor – init( ) Method
00:00 -
05. Types of Constructors
00:00 -
06. Attributes – class & instance
00:00 -
07. Instance Methods
00:00 -
08. Class Methods
00:00 -
09. Static Methods
00:00 -
10. Practice Problem
00:00 -
11. Encapsulation in OOPs
00:00 -
12. Inheritance in OOPs
00:00 -
13. Types of Inheritance
00:00 -
14. Abstraction
00:00 -
15. Polymorphism (Function Overriding)
00:00 -
16. Polymorphism (Duck Typing)
00:00 -
17. Python Fundamentals Part4
00:00 -
18. Python Fundamentals _Assignment4
00:00 -
19. Chat_system_code
00:00
07. Python Fundamentals (Part V)
-
01. File I_O
00:00 -
02. Operations on Files
00:00 -
03. Modes in File Operations
00:00 -
04. _with_ Keyword
00:00 -
05. Delete Files
00:00 -
06. Practice Problem
00:00 -
07. Exception Handling
00:00 -
08. _finally_ Keyword
00:00 -
09. List Comprehensions
00:00 -
10. Working with JSON Module
00:00 -
11. Python Fundamentals Part5
00:00 -
12. Python Fundamentals _Assignment5
00:00
08. Required Installation
-
01. Installing Anaconda
00:00 -
02. Conda prompt
00:00 -
03. Installing Jupyter Notebook
00:00 -
04. Installing JupyterLab
00:00
09. Phase 2 : Data
-
01.Thinking_in_Terms_of_Data
00:00 -
02._Getting_started
00:00 -
03._Set_up_JSON_data
00:00 -
04_Amazon_Store_Clean_&_Structure_Data_RATNA
00:00 -
05._Amazon_Store_Meaningful_Insights
00:00 -
06_Amazon_Store_Recommendation_Feature
00:00
10. NumPy
-
01._Introduction_to_NumPy
00:00 -
02._Installation_&_Usage
00:00 -
03._Python_List_vs_NumPy_Array
00:00 -
04._Creating_Arrays_from_Lists
00:00 -
05_Creating_Arrays_using_built_in_methods
00:00 -
06._Array_Properties
00:00 -
07) Reshaping array
00:00 -
08._Indexing_on_Arrays
00:00 -
09._Slicing_Arrays
00:00 -
10._Copy_v_s_View_in_Slice
00:00 -
11._Common_NumPy_Data_Types
00:00 -
12._Multi-dimensional_Arrays_&_Axes
00:00 -
13._3D_Arrays
00:00 -
14._Vectorization_&_Broadcasting
00:00 -
15._Vector_Normalization
00:00 -
16._Math_-_Mean_&_Standard_Deviation
00:00 -
17._Mathematical_Functions_(Aggregate)
00:00 -
18._Other_Math_functions
00:00 -
19.numpy_tutorial.ipynb
00:00 -
20._NumPy.pdf
00:00
11. Pandas (Part I)
-
01._Data_Science_Process
00:00 -
02._What_is_EDA
00:00 -
02.5_Introduction_to_Pandas
00:00 -
03._Series_in_Pandas
00:00 -
04._Series_Properties
00:00 -
05._DataFrame_in_Pandas
00:00 -
06_Pandas_with_csv_&_json_data_give_file
00:00 -
07._DataFrame_Methods
00:00 -
08._Using_Kaggle_DataSet
00:00 -
09._Indexing_&_Selecting_Data
00:00 -
10._Filtering_Data
00:00 -
11._Filtering_Data_using_Query
00:00 -
12_Data_Cleaning_Handle_Missing_Values_give_file
00:00 -
13._Data_Cleaning_(Handle_Duplicates)
00:00 -
14._Data_Cleaning_(Handle_Data_Types)
00:00 -
15._Data_Cleaning_(Handle_Strings)
00:00 -
employee_data.csv
00:00 -
pandas_tutorial.ipynb
00:00 -
raw_data.csv
00:00
12. Pandas (Part II)
-
01._Data_Transformation
00:00 -
02_Data_Transformation_other_Methods
00:00 -
03._Practice_Task
00:00 -
04_Writing_data_to_csv_&_json_files
00:00 -
05._Group_by_&_Aggregation
00:00 -
06_Melt_&_Pivot_for_Reshaping
00:00 -
07_Basic_Visualization_with_Pandas
00:00 -
08._Merge_&_Join_Data
00:00 -
09_Data_Concatenation_with_Pandas
00:00 -
10._Pandas_Notes.pdf
00:00 -
11._Pandas_Assignment_Problems.pdf
00:00
13. Data Collection
-
01. What is data collection
00:00 -
02. Multiple Sources Of Data Science
00:00 -
03. STARTING WITH SQL
00:00
14. SQL (Part I)
-
01)What_is_a_Database
00:00 -
02)SQL_v_s_NoSQL
00:00 -
03)What_is_SQL
00:00 -
04)What_is_a_Table
00:00 -
05)(For_Windows)_Installation
00:00 -
06)(For_Mac)_Installation
00:00 -
07)Our_First_Database_RATNA
00:00 -
08)Our_First_Table
00:00 -
09)Database_Queries
00:00 -
10)CREATE_Table
00:00 -
11)What_are_Constraints
00:00 -
12)Key_Constraints
00:00 -
13)Primary_&_Foreign_Keys
00:00 -
14)INSERT_into_Table
00:00 -
15)SELECT_Command
00:00 -
16)Where_Clause
00:00
15. SQL (Part II)
-
01. Transactions & ACID properties
00:00 -
02. Commit in Transactions
00:00 -
03. Rollbacks & Savepoints
00:00 -
04. JOINs in SQL (inner join)
00:00 -
05. Left join & Right join
00:00 -
06. Outer join & Cross join
00:00 -
07. Self join
00:00 -
08. Practice problems – Exclusive joins
00:00 -
09. Sub-Queries in SQL
00:00 -
10. Views in SQL
00:00 -
11. Index in SQL
00:00 -
12. Composite Index
00:00 -
13. Stored Procedures
00:00 -
14. Call & Drop procedures
00:00
16.Data Collection (Continuation)
-
01. Population Techniques (Recap)
00:00 -
02.Working with APIs
00:00 -
03.Homework Problem
00:00 -
04.Starting with Web Scraping
00:00 -
05.HTML Overview
00:00 -
06.Important Tags in HTML
00:00 -
07.Attributes in HTML (1)
00:00 -
08.Web Scraping (requests Library)
00:00 -
09.Additional Techniques
00:00 -
10.Web Scraping (using BeautifulSoup)
00:00 -
11.BeautifulSoup Methods & Attributes
00:00 -
12.Storing Collected Data
00:00 -
13.Web Scraping.pdf
00:00 -
14.data_collection.ipynb
00:00
17. DAY-16+17 opp html
-
0.1)Installation_Guide_RATNA.pdf
00:00 -
02)HTML_Elements_&_Tags
00:00 -
03)Hello_World
00:00 -
04)Paragraph_Element_RATNA
00:00 -
06)Practice_Qs_(1)_RATNA
00:00 -
07)Boilerplate_Code
00:00 -
08)Lists_in_HTML
00:00 -
09)Attributes_in_HTML
00:00 -
1)Introduction_to_HTML
00:00 -
10)Anchor_Element
00:00 -
11)Image_Element
00:00 -
12)Practice_Qs_RATNA
00:00 -
13)More_HTML_Tags
00:00 -
14)Comments_in_HTML
00:00 -
15)Is_HTML_Case_Sensitive
00:00 -
16)Practice_Qs_(2)
00:00 -
17)_Inline_vs_Block
00:00 -
18)_Div_Element_RATNA
00:00 -
19)._Span_Element_RATNA
00:00 -
20)_Hr_Tag_RATNA
00:00 -
21)._Sup_&_Sub_Tags_RATNA
00:00 -
22)_Practice_Qs_RATNA
00:00 -
23)_Semantic_Markup_RATNA
00:00 -
24)_Semantic_Tags_RATNA
00:00 -
25)_Practice_Qs_RATNA
00:00 -
26)_HTML_Entities_RATNA
00:00 -
27)._Practice_Qs_RATNA
00:00 -
28)_Emmets_RATNA
00:00 -
29)Further_Understanding_HTML_RATNA
00:00 -
30)Assignment_Level_2_(Qs)_RATNA.pdf
00:00 -
31)Assignment_Level_2_(Ans)_RATNA.pdf
00:00 -
34)._Tables_in_HTML_RATNA
00:00 -
35)_Semantics_in_Tables_RATNA
00:00 -
36)_Colspan_&_Rowspan_Attributes_RATNA
00:00 -
37_Practice_Qs_RATNA
00:00 -
38)._Forms_in_HTML_RATNA
00:00 -
39)._Input_-_Form_Element_RATNA
00:00 -
40._Placeholders_&_Labels_RATNA
00:00 -
41)_Button_Element_RATNA
00:00 -
42)._Name_Attribute_RATNA
00:00 -
43)._Practice_Qs_RATNA
00:00 -
44)._Checkbox_-_Input_Element_RATNA
00:00 -
45)_Radio_-_Input_Element_RATNA
00:00 -
46)._Select_-_Input_Element_RATNA
00:00 -
47)_Range_-_Input_Element_RATNA
00:00 -
48)_Text_Area_RATNA
00:00 -
49)._Practice_Qs_RATNA
00:00 -
50)_HTML_Level_3_(Qs)_RATNA.pdf
00:00 -
51)._HTML_Level_3_(Ans)_RATNA.pdf
00:00 -
HTML_(Level_1)_Qs_RATNA.pdf
00:00 -
HTML_Level1_(Ans)_RATNA.pdf
00:00 -
Prerequisites_RATNA
00:00 -
Welcome_to_Sigma!_RATNA
00:00 -
What_is_the_Internet_RATNA
00:00 -
What_is_Web_Development_RATNA
00:00 -
What_will_we_learn_RATNA
00:00
18. Data Visualization
-
1 What is Data Visualization
00:00 -
10 Add Bar labels
00:00 -
11 Multiple datasets on Bar Chart
00:00 -
12 Bar Charts (Horizontal)
00:00 -
13 Scatter Plots
00:00 -
14 Customizations on Scatter Plots
00:00 -
15 Add Annotations
00:00 -
16 Multiple datasets on Scatter Plots
00:00 -
17 Pie Charts
00:00 -
18 Customizations on Pie Charts
00:00 -
2 How to Plot data
00:00 -
3 Introduction to Matplotlib
00:00 -
4 Important Plot Methods
00:00 -
5 Multiple datasets on Line Plot
00:00 -
6 Format Strings
00:00 -
7 Styling & Saving Plots
00:00 -
8 Common Plots & Charts
00:00 -
9 Bar Charts (Vertical)
00:00 -
matplotlib_tutorial_code.ipynb
00:00
Earn a certificate
Add this certificate to your resume to demonstrate your skills & increase your chances of getting noticed.